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Space group Clebsch-Gordan coefficients: 111. Computer 
generated coefficients by Dirl’s method 
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Bangor LL57 2UW, UK 

Received 24 September 1984, in final form 3 July 1985 

Abstract. Using the special solutions of the multiplicity problem established in papers I 
and I1  of this series, the computer generation of space group Clebsch-Gordan (CG) 
coefficients by Dirl’s method is described. All the elements of a CO matrix for the reduction 
of any Kronecker product of space group unirreps, in all 230 (single or double) space 
groups, are computed using a single explicit formula in terms of only the Miller and Love 
allowed matrix unirreps of the little groups occurring in the Kronecker product and its CG 

series decomposition. An example from the non-symmorphic primitive cubic space group 
P2,3 (198) is given where a complete CG matrix is displayed. 

1. Introduction 

In the previous papers in this series (Davies 1986a, b, hereafter referred to as DI and 
DII  respectively) we reported that the Miller and Love (1967) (hereafter referred to as 
ML) space group matrix unirreps yield special solutions of the multiplicity problem for 
all Kronecker products in all 230 (single and double) space groups. In this paper we 
describe a computer program, using the method of Dirl (1979), whereby these special 
solutions are used to generate a complete CG matrix, where all the elements are 
computed using a single explicit formula in terms of only the ML allowed matrix 
unirreps of the little groups occurring in the Kronecker product and its CG series 
decomposition. An illustrative example from the non-symmorphic primitive cubic 
space group P213 (198) is given where a complete CG matrix is displayed. In the 
following, we use the same notation and definitions as in DI and DII. Equations in DI 

and DII  are referenced by the prefix ‘I’ or ‘11’ respectively, followed by the equation 
number. 

2. Clebsch-Gordan coefficients by Dirl’s method 

In DI and DII  we reported that, for any Kronecker product in all 230 (single and 
double) space groups, there is always a special solution of the multiplicity problem, 
whereby for given ( K ~ ,  (6, (T‘)qo) such that in (1.10) m ( ~ ~ ) ~ l ( , , q , ) ; ( K O , q O ) >  0, it is possible 
to identify the multiplicity index w with special column indices of the Kronecker 
product (see (1.12)). Dirl (1979) has shown that the m~~~)’~~,,q,);(~O,q~)lP: PqolnKo coluqms 
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For the non-symmorphic primitive cubic space group P2,3 (198), the total run time 
for actually calculating the CG matrices for all Kronecker products for all q vectors 
(having non-trivial little co-groups) in the fundamental domain of the first Brillouin 
zone (see Cracknell et a1 1979, Davies and Cracknell 1979) is approximately 25 min. 

4. Example 

We take as our example a Kronecker product from the non-symmorphic primitive 
cubic space group G= P213 (198) (see also Davies and Dirl 1984). The symmetry 
operators, multiplication table, special q vectors (i.e. q vectors with non-trivial little 
co-groups), allowed matrix unirreps, etc, are given in Cracknell et a1 (1979) (hereafter 
referred to as CDML) and we adopt the notation of this reference for our example. In 
the following, the special q vectors GM = (0, 0, 0), X = (O,& 0), M = (4, f, 0) appear 
(where the coordinates are relative to primitive reciprocal lattice vectors). The symmetry 
operators and allowed matrix unirreps of the little groups G" ( q  = GM, X, M )  are 
given in CDML, pp 592-4. The symmetry elements of G are labelled using the notation 
of M L  and the set consists of: 

(3) 

together with all possible products with elements of the translation group T, of the 
primitive cubic lattice. The correspondence between the M L  notation and that used 
by Bradley and Cracknell (1972) may be found in table (3 .1 )  of CDML. In (3), a 
symmetry element denoted by a single integer denotes a point group symmetry element. 
Where a symmetry element in (3) consists of a pair of integers separated by a comma, 
the first integer denotes a point group symmetry element and the second integer denotes 
the associated non-primitive lattice translation according to the code: 1 = (f ,  0, i), 
2 = (i, f ,  0 ) ,  3 = (0, f ,  f) (where the coordinates are relative to conventional lattice 
vectors). For example, ( I ) ,  ( 5 ) ,  (9) in the Bradley and Cracknell (1972) notation are 
respectively: { E  I O } ,  {CY, I O } ,  {Cll IO} .  Similarly ( 2 , 2 ) ,  ( 3 , 3 ) ,  (4, 1 )  are respectively: 

We consider the Kronecker product A"3x)@A'1sx) .  The WVSR (see (1.7)) and the 
corresponding multiplicities for this Kronecker product are tabulated on p 104 and 
801, respectively, of Davies and Cracknell (1979). There are three WVSR and the 
corresponding terms (5, #)q0  (in (1.7)) are 

G = ((11, (2,213 (3,319 (4, I ) ,  (51, (6 ,2) ,  (7 ,3) ,  (8, 11, (9), (10,2),  (11,3), (12,1)) 

{ G x  I($, t ,  011, {G,. l(0, f ,  3)>, {C*Z Ict, 0, +)I. 

( (TI ,  (T))GM (01, ( 9 ) M  ((9, (i))M. (4) 

The corresponding component multiplicities are 

m ( l , X ) ( l . X ) , ( * o . M )  = K O =  1 ,  2, 3, 4. ( 6 b )  
From (66) it might appear that non-trivial 'multiplicity problems' exist with regard 

to calculating the corresponding CG coefficients since the mulitplicities of the unirreps 
.\(KO. 'M 1 , KO= 1 ,  2, 3, 4, in the Kronecker product A"*x'@A''3x' are greater than unity. 
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However, from (4) and (56) it is clear that these multiplicities greater than unity arise 
solely from the existence of more than one WVSR having identical vectors qo, namely 
qo = M. The component multiplicities in (56) are all unity. The orthogonality of the 
columns of the CG matrix labelled by different WVSR is guaranteed, even when the 
WVSR have identical vectors qo. Thus, in this Kronecker product, (5) show that the 
only non-trivial multiplicity problem occurs for A(49GM) for which the component 
multiplicity 

(7) ( ( T )  ( T I )  
m(l,X)( l ,X),(4.GM) = 3. 

The little group GCM = G  and the little groups GX and GM are given by 

GX = GM = {(1),-(2,2), (3,3),  (4,1)} (8) 

together with all possible products with elements of the translation group T. The 
isogonal point group P and the little co-groups PGM, PX, PM are given by 

p ~ PG'W - 

PX = p" = { ( I ) ,  (21, (31, (4)).  

- { ( I ) *  (21, (31, (4), (51, (61, (71, (81, (919 (101, ( 1 1 ) ,  (12)) (9a)  

(96) 

The first step is to fix the left coset representatives P:  P', q = GM, X ,  M, and these 

( loa)  

( lob )  

are chosen as follows: 

P : P ~ , ~  = { (i)} 

P:  pX = P: p M  = {(i), (51, @)I.  

The allowed matrix unirreps of GCM, GX, GM are given in C D M L  but are reproduced 

In tables 1,  2 and 3, the matrix representing a lattice translation t e T  is given by 
here in tables 1 ,  2 and 3 respectively, for convenience. 

exp(iq. t)r(K.q) [(l)], where q = GM, X, M respectively (see (1.3)). 

Table 1. Allowed matrix unirreps r'".c"'[g], g E GG". U = exp(2n i /3 ) .  

1 1  1 1 1 1 1 
2 1  1 1 1 w *  w *  
3 1  w w 

1 0 0  -1 0 0 0 0  0 1 0  -1 0 

(1: ;) 1: :j (; ; :) (; :l !j (;1 ,j 1 i) 

1 1  1 1 1 1 1 
2 w* w* w w w w 
3 w  w w *  w *  U* w* 

0 -1  0 0 1  0 0  0 0 -1 

(; 1 r:) ((i a :l) (i : 1) (a :l a) (; ; r ) (-11 p, a) 
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Table 2. Allowed matrix unirrep rcKsx)[g],  g E GX. 

g 
K ( 1 )  ( 2 , 2 )  ( 3 , 3 )  (431) 

85 1 

Table 3. Allowed matrix unirreps T ' K * M ' [ g ] ,  g E GM.  I = exp(in/2). 

As an  example of the procedure for solving a non-trivial multiplicity problem, we 
given in (7 ) .  We follow steps ( a ) - ( g )  consider the component multiplicity of 

O f  9 2 Of DII. 
( a )  From the first element in the list (4), we see that 

e=( i )  ( 1 l a )  
6' = (i) (1lb)  
q o =  GM. (1lc)  

(12) 

From (11.2) and (sa, b ) ,  the triple intersection group 

( b )  The left coset representatives 

from ( 9 a )  and (12) may be chosen to be 

p:,q.iqo = pX,X,CM - 
( 1 ) , ( 1 )  - { ( I ) ,  (2), (31, (411. 

Vj E p p , :  p;,$70= p G M .  pX,X;GM 

U, = (11,  (51, (9). 

ej, 6; = (i), (i); ( 5 ) ,  ( 5 ) ;  (9), (9). 

. ( 1 ) , ( 1 )  

(13) 
( c )  Using ( 1 1 )  and (11.3), generate the IP&: P$,$iqol = 3 pairs of $xed left coset 

representatives C,, of Pq, Pq' respectively, in P given by 

(14) 
( d )  From table 2 ,  the dimension of rc13x) is 2 ,  therefore 

nK = n K ,  = 2. (15 )  

(16) 

From (14) and (15 ) ,  there is a total of 12 column vectors 

indexed by a;, 6; = (i), (7); ( 5 ) ,  ( 5 ) ;  (g), (9); c = 1 ,  2; c '=  1 ,  2. 
( e )  The value of a, in (16) is fixed at unity, and using ( I I S ) ,  6 of the above 12 

column vectors have norm 1/J2 and the remaining 6 have zero norm. The values of 
(ej, c; e:, c') of those having non-zero norm are given in table 4. 

The dimension of the space spanned by the column vectors of non-zero norm must 
be equal to the component multiplicity m~!~3, !~!x) ,c4 ,cM) = 3 from (7). A 'special solution 
of the multiplicity problem' is obtained for this component multiplicity if three pairwise 
orthogonal column vectors can be found. 

B(5.9) ( I( ' .9' 1; ( Ko.90) ( 8,. C; b ; . C ' )  = B', x )( 1, x 1; (4, C M  )( 6,. C; a;, C') 
ea0 ea0 
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Table 4. Indices of column vectors of norm 1/J2. The set of indices ((i), 1; (i), 1) is 
denoted by a, the set ( (T) ,  1; ( T ) ,  2) by 6, etc. 

c f )  By using (11.6), it is found that the column vectors in table 4 labelled by a, c, 

( g )  Thus, the column vectors 
e are pairwise orthogonal. 

v = l , 2 , 3  (17)  ( 1 .x )( 1 ,x i;(4.GMH bu,cu ,b ; .cL  i 
B(ii.1 

( 6 3 ,  c3; e;, 4) = ((9, 1; ( % 2 )  

are pairwise orthogonal and a ‘special solution of the multiplicity problem’ exists 
where the component multiplicity index w is identified with the special column indices 
in (18): 

w = (e”, c,; e:, c:) U = 1,2,3.  (19) 

It is interesting to observe at this point that the ‘special solution of the multiplicity 
problem’, given by (18) and  (19), is not unique. The row elements of the column 
vectors are given by (11.4) and  are tabulated for those of non-zero norm in table 5. 

Table 5. Row elements of column vectors in table 4. The indices (6,. c,; e;, c:) labelling 
the column vectors of non-zero norm are abbreviated to a, b, c, d, e, f (see table 4). For 
all column vectors, the row elements other than those labelled by a, b, c, d, e, f are zero. 

a b C d e f 

Q 1 1 

I 
2 2 0 0 0 0 

b -4 2 0 0 0 0 
0 0 2 I 0 0 

d 0 0 I I 0 0 
e 0 0 0 0 f -L 

f 0 0 0 0 -; 2 

-- 

C I I 

I I 

I 

From table 5 it is clearly seen that there are, in fact, 2 3 = 8  triples of pairwise 
orthogonal column vectors, namely ( ( a  or b ) ,  (c  or d ) ,  ( e  or f)). Thus, there are 8 
different ‘speciaI solutions of the multiplicity problem’ for this case. 

From (51, all remaining component multiplicities are unity and  therefore, for each 
of these, it is only necessary to select one column vector of non-zero norm. The ‘special 
solutions of the multiplicity problem’ in terms of the indices of the chosen column 
vectors and their norms, for all component multiplicities in (S), are given in table 6. 
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0 0 0 1 0 0  
0 0 1 0 0 0  
0 0 0 0  0 - 1  

X =  

853 

Table 6. Special solutions of the multiplicity problem )r = (eL, c,, a:, c l )  

1 
2 
3 
4 
4 
4 
1 
2 
3 
4 
1 
2 
3 
4 

Using the special solutions of the multiplicity problem in table 6, all the columns 
of the CG matrix may be calculated using ( 1) and the allowed matrix unirreps in tables 
1, 2 and 3. 

The CG matrix C".x"'.x' in ' table 7 will reduce the Kronecker product A",x)[g]O 
.2'i3x)[g], for all g E C = P 2 i 3 ,  into block diagonal form. As an  example, consider 
g = (4, 1). The allowed matrices r(ro3CM'[(4, l)], r(Kusx'[(4,  l)] ,  r (K09M)[(47 111, K ~ =  1, 
2, 3, 4, are given in tables 1, 2 and 3 respectively. Using (1.5) and tables (3.2a) and  

4, may be constructed and are given in table 8. 

by the block matrix 

(3.6) of CDML, the matrices AiKo9cCM'[(4, 113, ,4 '"0~~'[(4,  l)], A ( K 0 9 M i  [(4, 113, K O =  1, 2 ,  3, 

The Kronecker product matrix 1 \ ( ' ~ ~ ' [ ( 4 ,  1)]OA('3x)[(4,  l ) ]  is a 36 x 36 matrix given 

1 x 0  0 0 0  o \  
0 - x  0 0 0 0 

Ai19x)[(4, l)]OAii3X'[(4, l ) ]  = I i i o x o  1 
x o o  
0 0 0 - x  
0 0 x 0  

where the matrix X is given by 

The rows and  columns of A"-xi[(4, l)]OA(i3x'[(4, 1)J are indexed lexicographically 
by 7, d ;  ? I ,  d '  where ?€{(I), (s),(g)}, d = 1, 2, ? ' ~ { ( l ) ,  ( s ) ,  (g)}, d ' =  1, 2. It may be 
verified that the CG matrix C ' i~x"isx '  in table 7, when substituted into (1.10) (with 
( K ,  q )  = ( K ' ,  q ' )  = (1, X), and the component multiplicities m ~ ~ ~ ) ~ K  ,q j , ( r o , q o )  are given by 
(S), reduces the Kronecker product A(i3xi[(4, 1)]OA(19x'[(4, l ) ]  into block diagonal 
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Table 8. Induced matrices 1i'"*~'[(4, l)]. The rows and columns of A'"*4'[(4, l ) ]  for q = X, 
M are labelled by the fixed left coset representatives (I), ( 5 ) ,  (I) of P", PM in P. 

I = exp(ir/2), A = 
1 0  

K 4 A(r*q)[(4, l ) ]  

1 
2 
3 

4 

1 

1 

2 

3 

4 

form given by: 

diag{l, 1,1, J, J, J, K L, M N, K 4 M, NI 

where 
1 0  0 

1 0 0  -1  0 0 -1  0 

From ( 5 )  and table 8, it is verified that (22) gives the correct block diagonal form. 

5. Conclusion 

The purpose of this paper is to report that a computer program has been written, based 
on the method of Dirl (1979), to calculate CG coefficients for the reduction of Kronecker 
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products of Miller and Love (1967) matrix unirreps (as extended by Cracknell et a1 
1979) in any of the 230 (single or double) crystallographic space groups. The program 
uses WVSR and multiplicities previously computed (Davies and Cracknell 1979, Crack- 
ne11 and Davies 1979) and the ‘special solutions of the multiplicity problem’ reported 
in DI and D I I .  The method is ideally suited for computer application, since a crucial 
feature, with respect to obtaining an efficient computer program, is that all elements 
of the C G  matrix can be computed using a single, explicit formula (equation (1)) in 
terms of the allowed matrix unirreps of the little groups occurring in the Kronecker 
product. No solving of simultaneous equations is required as in, for example, Chen 
et al (1983). 

The method is attractive for its elegance and essential simplicity. Once the rather 
complicated (but necessary) notation was mastered, it was straightforward to program. 
It is our intention to make available, in an appropriate form through Plenum Press, 
the CG matrices for the Kronecker products tabulated in Davies and Cracknell (1979, 
1980) and Cracknell and Davies (1979). 
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