Space group Clebsch-Gordan coefficients. III. Computer generated coefficients by Dirl's method

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1986 J. Phys. A: Math. Gen. 19847
(http://iopscience.iop.org/0305-4470/19/6/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:11

Please note that terms and conditions apply.

Space group Clebsch-Gordan coefficients: III. Computer generated coefficients by Dirl's method

B L Davies
Department of Applied Mathematics and Computation, University College of North Wales, Bangor LL57 2UW, UK

Received 24 September 1984, in final form 3 July 1985

Abstract

Using the special solutions of the multiplicity problem established in papers I and II of this series, the computer generation of space group Clebsch-Gordan (CG) coefficients by Dirl's method is described. All the elements of a CG matrix for the reduction of any Kronecker product of space group unirreps, in all 230 (single or double) space groups, are computed using a single explicit formula in terms of only the Miller and Love allowed matrix unirreps of the little groups occurring in the Kronecker product and its CG series decomposition. An example from the non-symmorphic primitive cubic space group P2,3 (198) is given where a complete CG matrix is displayed.

1. Introduction

In the previous papers in this series (Davies 1986a, b, hereafter referred to as DI and DII respectively) we reported that the Miller and Love (1967) (hereafter referred to as ML) space group matrix unirreps yield special solutions of the multiplicity problem for all Kronecker products in all 230 (single and double) space groups. In this paper we describe a computer program, using the method of Dirl (1979), whereby these special solutions are used to generate a complete cG matrix, where all the elements are computed using a single explicit formula in terms of only the mL allowed matrix unirreps of the little groups occurring in the Kronecker product and its cG series decomposition. An illustrative example from the non-symmorphic primitive cubic space group $\mathrm{P} 2,3$ (198) is given where a complete CG matrix is displayed. In the following, we use the same notation and definitions as in DI and DII. Equations in DI and DII are referenced by the prefix 'I' or 'II' respectively, followed by the equation number.

2. Clebsch-Gordan coefficients by Dirl's method

In DI and DII we reported that, for any Kronecker product in all 230 (single and double) space groups, there is always a special solution of the multiplicity problem, whereby for given ($\kappa_{0},\left(\bar{\sigma}, \bar{\sigma}^{\prime}\right) \boldsymbol{q}_{0}$) such that in (I.10) $m_{\left(\kappa_{,}, \overline{\sigma^{\prime}}\right)\left(\kappa^{\prime}, q^{\prime}\right):\left(\kappa_{0}, q_{0}\right)}^{\left(\overline{q_{0}}\right)}>0$, it is possible to identify the multiplicity index w with special column indices of the Kronecker product (see (I.12)). Dirl (1979) has shown that the $m_{(\kappa, q)\left(\kappa^{\prime}, q^{\prime}\right) ;\left(\kappa_{0}, q_{0}\right)}^{\left(\sigma, \sigma^{-0}\right)} \mid \mathrm{P}: \mathrm{P}^{\boldsymbol{q}_{0} \mid} n_{\kappa_{0}}$ columns
of the cG matrix indexed by ($\kappa_{0}\left(\bar{\sigma}, \bar{\sigma}^{\prime}\right) \boldsymbol{q}_{0}$) may then be calculated by

$$
\begin{align*}
& \times \delta_{\boldsymbol{q}(\bar{F})+\boldsymbol{q}\left(\overline{\boldsymbol{F}}^{\prime}\right), \boldsymbol{q}_{0}\left(\dot{\sigma}_{0}\right)+\boldsymbol{Q}\left[\boldsymbol{q}(\bar{\tau})+\boldsymbol{q}^{\prime}\left(\bar{F}^{\prime}\right)\right]} \frac{n_{\boldsymbol{\kappa}_{0}}}{\mid \mathbf{P}^{q_{0}}} \sum_{\beta \in \mathrm{P}} \Delta^{\boldsymbol{q}_{0}}\left(\bar{\sigma}_{0}, \beta \bar{e}\right) \Delta^{\boldsymbol{q}}\left(\bar{\tau}, \beta \bar{\sigma}_{v}\right) \Delta^{\boldsymbol{q}}\left(\bar{\tau}^{\prime}, \beta \bar{\sigma}_{v}^{\prime}\right) \\
& \times \Gamma_{d c_{t}, ~}^{(\kappa, q)}\left[\left(\bar{\tau}^{\prime} \mid \boldsymbol{\tau}(\bar{\tau})\right)^{-1}(\beta \mid \boldsymbol{\tau}(\beta))\left(\bar{\sigma}_{v} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{v}\right)\right)\right] \\
& \times \Gamma_{d^{\prime}, \mathrm{c}_{\mathrm{t}}}^{\left(\boldsymbol{\kappa}^{\prime}\right)}\left[\left(\bar{\tau}^{\prime} \mid \boldsymbol{\tau}\left(\bar{\tau}^{\prime}\right)\right)^{-1}(\beta \mid \boldsymbol{\tau}(\beta))\left(\bar{\sigma}_{v}^{\prime} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{v}^{\prime}\right)\right)\right] \Gamma_{j a_{j}}^{\left(\kappa_{0}, \boldsymbol{q}_{0}\right)^{*}}\left[\left(\bar{\sigma}_{0} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{0}\right)\right)^{-1}(\beta \mid \boldsymbol{\tau}(\beta))\right] \tag{1}
\end{align*}
$$

where $\bar{\tau} \in \mathrm{P}: \mathrm{P}^{q}, \quad d=1, \quad 2, \ldots, n_{\kappa}, \quad \bar{\tau}^{\prime} \in \mathrm{P}: \mathrm{P}^{q}, \quad d^{\prime}=1, \quad 2, \ldots, n_{\kappa^{\prime}} ; \quad v=1, \quad 2, \ldots$, $m_{(\kappa, q)\left(\kappa^{\prime}, q^{\prime}\right) ;\left(\kappa_{0}, q_{0}\right)}^{\left(\boldsymbol{q}_{0}, \bar{\sigma}_{0}^{\prime}\right.}, \bar{\sigma}_{0} \in \mathrm{P}: \mathrm{P}^{\mathrm{q}_{0}}, j=1,2, \ldots, n_{\kappa_{0}}$, and where

$$
\begin{align*}
& \times \Gamma_{c_{i} c_{v}, c_{v}}^{\left(\kappa_{i}\right)}\left[\left(\bar{\sigma}_{v} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{v}\right)\right)^{-1}(\beta \mid \boldsymbol{\tau}(\beta))\left(\bar{\sigma}_{v} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{v}\right)\right)\right] \Gamma_{c_{v}, c_{v}^{\prime}, q^{\prime}}^{\left(\mathcal{C}^{\prime}\right)} \\
& \times\left[\left(\bar{\sigma}_{v}^{\prime} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{v}^{\prime}\right)\right)^{-1}(\beta \mid \boldsymbol{\tau}(\beta))\left(\bar{\sigma}_{v}^{\prime} \mid \boldsymbol{\tau}\left(\bar{\sigma}_{v}^{\prime}\right)\right)\right] \Gamma_{a_{0} a_{0}}^{\left(\kappa_{0} \boldsymbol{q}_{0}\right)^{*}}[(\beta \mid \boldsymbol{\tau}(\beta))] . \tag{2}
\end{align*}
$$

In (1) and (2) we have preferred to use the allowed matrix unirreps $\Gamma^{\left(\kappa^{\prime \prime}, q^{\prime \prime}\right)}$ of the little groups $\mathrm{G}^{\boldsymbol{q}^{\prime \prime}}, \kappa^{\prime \prime}=\kappa, \kappa^{\prime}, \kappa_{0}, \boldsymbol{q}^{\prime \prime}=\boldsymbol{q}, \boldsymbol{q}^{\prime}, \boldsymbol{q}_{0}$, instead of the projective matrix unirreps $R^{\kappa^{\prime \prime}}$ of the little co-groups $\mathrm{P}^{q^{\prime \prime}}\left(\simeq \mathrm{G}^{q^{\prime}} / \mathrm{T}\right)$ (see § 2 of DiI). By using (1) and (2) for all $\left(\kappa_{0},\left(\bar{\sigma}, \bar{\sigma}^{\prime}\right) \boldsymbol{q}_{0}\right)$, such that in (I.10) $m_{(\kappa, \boldsymbol{q}}^{\left(\bar{\sigma}, \tilde{\sigma}^{\prime}\right)\left(\kappa^{\prime} ; \boldsymbol{q}^{\prime}\right) ;\left\{\kappa_{0}, \boldsymbol{q}_{0}\right)} \gg 0$, all columns of the CG matrix may be calculated.

As in DI, the generalisation of (1) and (2) to 'double' space groups is trivial (Dirl 1981).

3. Program

We have written a program in ALGOL 60 for a DEC System 10 computer to calculate CG coefficients for Kronecker products of (single or double) space group unirreps and the algorithm for the first stage of this program, the search for special solutions of the multiplicity problem, is described in DII. The algorithm for the second stage, the actual calculation of the cG coefficients themselves, may be very briefly described as follows.

Step (c)(iii) of DII is followed immediately by:
(c)(iv) for each value of the multiplicity index

$$
w=\left(\bar{\sigma}_{v,}, c_{v} ; \bar{\sigma}_{v}^{\prime}, c_{v}^{\prime}\right) \quad v=1,2, \ldots, m_{[\kappa, q)\left(\kappa^{\prime}, q^{\prime}\right):\left(\kappa_{0}, q_{0}\right)}^{\left(\bar{\sigma}_{0}^{\prime}\right)}
$$

in (I.12), compute the norm of the corresponding vector $B_{\bar{e} a_{0}}^{(k, q)\left(\kappa^{\prime}, q^{\prime}\right) ;\left(\kappa_{(w,} \boldsymbol{q}_{0}\right)\left(\bar{\sigma}_{v}, c_{v} ; \bar{\sigma}_{v}^{\prime}, c_{v}^{\prime}\right\rangle}$ using (2).
(c)(v) Using (1) compute the columns of the CG matrix for $v=1$,

The whole CG matrix is completed by repeating steps (c)(iv) and $c(v)$ above for every $m_{(\kappa, \boldsymbol{q})\left(\kappa^{\prime}, q^{\prime}\right) ;\left(\kappa_{0}, q_{0}\right)}^{\left(\sigma_{0}, \tilde{\sigma}^{\prime}\right)}>0$ in (I.10).
(d) Finally, check that the computed cG matrix correctly reduces the Kronecker product matrix as given by (I.10). It is sufficient to carry out this check for all the generating elements of G.

The program, which has been designed to run for any space group, has been tested on a representative selection of space groups. The run time varies considerably according to the size of the group. For high-dimensional Kronecker products, the most time consuming part is the block diagonalisation check given by step (d) above.

For the non-symmorphic primitive cubic space group $\mathrm{P}_{1} 3$ (198), the total run time for actually calculating the cG matrices for all Kronecker products for all \boldsymbol{q} vectors (having non-trivial little co-groups) in the fundamental domain of the first Brillouin zone (see Cracknell et al 1979, Davies and Cracknell 1979) is approximately 25 min .

4. Example

We take as our example a Kronecker product from the non-symmorphic primitive cubic space group $G=P 2{ }_{1} 3$ (198) (see also Davies and Dirl 1984). The symmetry operators, multiplication table, special \boldsymbol{q} vectors (i.e. \boldsymbol{q} vectors with non-trivial little co-groups), allowed matrix unirreps, etc, are given in Cracknell et al (1979) (hereafter referred to as CDML) and we adopt the notation of this reference for our example. In the following, the special \boldsymbol{q} vectors $\boldsymbol{G M}=(0,0,0), \boldsymbol{X}=\left(0, \frac{1}{2}, 0\right), \boldsymbol{M}=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ appear (where the coordinates are relative to primitive reciprocal lattice vectors). The symmetry operators and allowed matrix unirreps of the little groups $G^{\boldsymbol{q}}(\boldsymbol{q}=\boldsymbol{G M}, \boldsymbol{X}, \boldsymbol{M})$ are given in CDML, pp 592-4. The symmetry elements of G are labelled using the notation of ML and the set consists of:
$\mathrm{G}=\{(1),(2,2),(3,3),(4,1),(5),(6,2),(7,3),(8,1),(9),(10,2),(11,3),(12,1)\}$
together with all possible products with elements of the translation group T , of the primitive cubic lattice. The correspondence between the ml notation and that used by Bradley and Cracknell (1972) may be found in table (3.1) of cDmL. In (3), a symmetry element denoted by a single integer denotes a point group symmetry element. Where a symmetry element in (3) consists of a pair of integers separated by a comma, the first integer denotes a point group symmetry element and the second integer denotes the associated non-primitive lattice translation according to the code: $1=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$, $2=\left(\frac{1}{2}, \frac{1}{2}, 0\right), 3=\left(0, \frac{1}{2}, \frac{1}{2}\right)$ (where the coordinates are relative to conventional lattice vectors). For example, (1), (5), (9) in the Bradley and Cracknell (1972) notation are respectively: $\{E \mid \mathbf{0}\},\left\{C_{31}^{-} \mid \mathbf{0}\right\},\left\{C_{31}^{+} \mid \mathbf{0}\right\}$. Similarly $(2,2),(3,3),(4,1)$ are respectively: $\left\{C_{2 x} \left\lvert\,\left(\frac{1}{2}, \frac{1}{2}, 0\right)\right.\right\},\left\{C_{2 y} \left\lvert\,\left(0, \frac{1}{2}, \frac{1}{2}\right)\right.\right\},\left\{C_{2 z} \left\lvert\,\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right.\right\}$.

We consider the Kronecker product $\Lambda^{(1, \boldsymbol{X})} \otimes \Lambda^{(1, \boldsymbol{X})}$. The WVSR (see (I.7)) and the corresponding multiplicities for this Kronecker product are tabulated on p 104 and 801, respectively, of Davies and Cracknell (1979). There are three wvsr and the corresponding terms ($\bar{\sigma}, \bar{\sigma}^{\prime}$) \boldsymbol{q}_{0} (in (I.7)) are

$$
\begin{equation*}
((\overline{1}),(\overline{1})) \boldsymbol{G M} \quad((\overline{1}),(\overline{5})) \boldsymbol{M} \quad((\overline{5}),(\overline{1})) \boldsymbol{M} . \tag{4}
\end{equation*}
$$

The corresponding component multiplicities are

$$
\begin{align*}
& m_{(1, \boldsymbol{X}),(1), \boldsymbol{X}) ;\left(\kappa_{0}, \boldsymbol{G}\right)}^{(\overline{(1)},(\hat{M})}= \begin{cases}1 & \kappa_{0}=1,2,3 \\
3 & \kappa_{0}=4\end{cases} \tag{5a}\\
& m_{(1, \boldsymbol{X})(1, \boldsymbol{X}) ;\left(\kappa_{0}, \boldsymbol{M}\right)}^{(\overline{1}),(\overline{5}))} m_{(1, \boldsymbol{X}),(1, \boldsymbol{X}) ;\left(\kappa_{0}, \boldsymbol{M}\right)=1}^{((\overline{5}),(\overline{)}))} \kappa_{0}=1,2,3,4 . \tag{5b}
\end{align*}
$$

Using (I.6), (5a) and (5b), the total multiplicities associated with the vectors GM and \boldsymbol{M} are

$$
\begin{align*}
& m_{(1, \boldsymbol{X})(1, \boldsymbol{X}) ;\left(\kappa_{0}, G \boldsymbol{M}\right)}= \begin{cases}1 & \kappa_{0}=1,2,3 \\
3 & \kappa_{0}=4\end{cases} \tag{6a}\\
& m_{(1, \boldsymbol{X})(1, \boldsymbol{X}) ;\left(\kappa_{0}, \boldsymbol{M}\right)}=2 \tag{6b}
\end{align*} \kappa_{0}=1,2,3,4.2 \text {. } .
$$

From ($6 b$) it might appear that non-trivial 'multiplicity problems' exist with regard to calculating the corresponding CG coefficients since the mulitplicities of the unirreps $\Lambda^{\left(\kappa_{0} \cdot \boldsymbol{M}\right)}, \kappa_{0}=1,2,3,4$, in the Kronecker product $\Lambda^{(1, \boldsymbol{X})} \otimes \Lambda^{(1, \boldsymbol{X})}$ are greater than unity.

However, from (4) and ($5 b$) it is clear that these multiplicities greater than unity arise solely from the existence of more than one WVSR having identical vectors \boldsymbol{q}_{0}, namely $\boldsymbol{q}_{0}=\boldsymbol{M}$. The component multiplicities in ($5 b$) are all unity. The orthogonality of the columns of the CG matrix labelled by different wVSR is guaranteed, even when the wvsr have identical vectors \boldsymbol{q}_{0}. Thus, in this Kronecker product, (5) show that the only non-trivial multiplicity problem occurs for $\Lambda^{(4, G M)}$ for which the component multiplicity

The little group $G^{G M}=G$ and the little groups $G^{\boldsymbol{x}}$ and G^{M} are given by

$$
\begin{equation*}
G^{X}=G^{M}=\{(1) ;(2,2),(3,3),(4,1)\} \tag{8}
\end{equation*}
$$

together with all possible products with elements of the translation group T. The isogonal point group P and the little co-groups $\mathrm{P}^{G M}, \mathrm{P}^{\boldsymbol{X}}, \mathrm{P}^{M}$ are given by

$$
\begin{align*}
& \mathrm{P}=\mathrm{P}^{G M}=\{(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12)\} \tag{9a}\\
& \mathrm{P}^{X}=\mathrm{P}^{M}=\{(1),(2),(3),(4)\} . \tag{9b}
\end{align*}
$$

The first step is to $f i x$ the left coset representatives $\mathrm{P}: \mathrm{P}^{q}, \boldsymbol{q}=\boldsymbol{G M}, \boldsymbol{X}, \boldsymbol{M}$, and these are chosen as follows:

$$
\begin{align*}
& P: P^{G M}=\{(\overline{1})\} \tag{10a}\\
& P: P^{X}=P: P^{M}=\{(\overline{1}),(\overline{5}),(\overline{9})\} . \tag{10b}
\end{align*}
$$

The allowed matrix unirreps of $G^{G M}, G^{\boldsymbol{X}}, \mathrm{G}^{M}$ are given in CDML but are reproduced here in tables 1,2 and 3 respectively, for convenience.

In tables 1,2 and 3 , the matrix representing a lattice translation $t \in T$ is given by $\exp (\mathrm{iq} \cdot \boldsymbol{t}) \Gamma^{(\kappa, \boldsymbol{q})}[(1)]$, where $\boldsymbol{q}=\boldsymbol{G M}, \boldsymbol{X}, \boldsymbol{M}$ respectively (see (I.3)).

Table 1. Allowed matrix unirreps $\Gamma^{\lceil\kappa, G M}[g], g \in \mathrm{G}^{G M} \cdot \omega=\exp (2 \pi \mathrm{i} / 3)$.

Table 2. Allowed matrix unirrep $\Gamma^{(\kappa, X)}[g], g \in G^{X}$.

g
κ

1	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Table 3. Allowed matrix unirreps $\Gamma^{(\kappa, M)}[g], g \in G^{M} . I=\exp (\mathrm{i} \pi / 2)$.

g	(1)	$(2,2)$	$(3,3)$	$(4,1)$
1	1	I	$-I$	1
2	1	$-I$	I	1
3	1	I	I	-1
4	1	$-I$	$-I$	-1

As an example of the procedure for solving a non-trivial multiplicity problem, we consider the component multiplicity of $\Lambda^{(4, G M)}$ given in (7). We follow steps (a)-(g) of $\S 2$ of DII.
(a) From the first element in the list (4), we see that

$$
\begin{align*}
& \bar{\sigma}=(\overline{1}) \tag{11a}\\
& \bar{\sigma}^{\prime}=(\overline{1}) \tag{11b}\\
& \boldsymbol{q}_{0}=\boldsymbol{G} \boldsymbol{M} . \tag{11c}
\end{align*}
$$

From (II.2) and ($9 a, b$), the triple intersection group

$$
\begin{equation*}
\mathbf{P}_{\sigma, \bar{\sigma}}^{q_{\sigma}^{q} ; q_{0} ; \boldsymbol{q}_{0}}=\mathbf{P}_{(\mathbf{1}),(1)}^{X, X, X}=\{(1),(2),(3),(4)\} . \tag{12}
\end{equation*}
$$

(b) The left coset representatives
from ($9 a$) and (12) may be chosen to be

$$
\begin{equation*}
v_{j}=(1),(5),(9) . \tag{13}
\end{equation*}
$$

(c) Using (11) and (11.3), generate the $\left|\mathrm{P}^{q_{0}}: \mathrm{P}_{\bar{\sigma}, \bar{\sigma}^{\prime} ; q_{0}}^{q_{0}}\right|=3$ pairs of fixed left coset representatives $\bar{\sigma}_{j}, \bar{\sigma}_{,}^{\prime}$ of $\mathrm{P}^{q}, \mathrm{P}^{q^{\prime}}$ respectively, in P given by

$$
\begin{equation*}
\bar{\sigma}_{j}, \bar{\sigma}_{j}^{\prime}=(\overline{1}),(\overline{1}) ;(\overline{5}),(\overline{5}) ;(\overline{9}),(\overline{9}) . \tag{14}
\end{equation*}
$$

(d) From table 2, the dimension of $\Gamma^{(1, \boldsymbol{X})}$ is 2, therefore

$$
\begin{equation*}
n_{\kappa}=n_{\kappa^{\prime}}=2 . \tag{15}
\end{equation*}
$$

From (14) and (15), there is a total of 12 column vectors
indexed by $\bar{\sigma}_{j}, \bar{\sigma}_{j}^{\prime}=(\overline{1}),(\overline{1}) ;(\overline{5}),(\overline{5}) ;(\overline{9}),(\overline{9}) ; c=1,2 ; c^{\prime}=1,2$.
(e) The value of a_{0} in (16) is fixed at unity, and using (II.5), 6 of the above 12 column vectors have norm $1 / \sqrt{ } 2$ and the remaining 6 have zero norm. The values of ($\bar{\sigma}_{j}, c ; \bar{\sigma}_{j}^{\prime}, c^{\prime}$) of those having non-zero norm are given in table 4.

The dimension of the space spanned by the column vectors of non-zero norm must be equal to the component multiplicity $m_{(1, \boldsymbol{X})(1, \boldsymbol{X}) ;(4, G \boldsymbol{M})}^{(\overline{1}, \overline{1})}=3$ from (7). A 'special solution of the multiplicity problem' is obtained for this component multiplicity if three pairwise orthogonal column vectors can be found.

Table 4. Indices of column vectors of norm $1 / \sqrt{ } 2$. The set of indices $((\overline{1}), 1 ;(\overline{1}), 1)$ is denoted by a, the set $((\overline{1}), 1 ;(\overline{1}), 2)$ by b, etc.

	$\bar{\sigma}_{J}$	c	$\bar{\sigma}_{j}^{\prime}$	c^{\prime}
a	$(\overline{1})$	1	$(\overline{1})$	1
b	$(\overline{1})$	2	$(\overline{1})$	2
c	$(\overline{5})$	1	$(\overline{5})$	2
d	$(\overline{5})$	2	$(\overline{5})$	1
e	$(\overline{9})$	1	$(\overline{9})$	2
f	$(\overline{9})$	2	$(\overline{9})$	1

(f) By using (II.6), it is found that the column vectors in table 4 labelled by a, c, e are pairwise orthogonal.
(g) Thus, the column vectors

$$
\begin{equation*}
B_{(1)}^{(1, X), 1}(1, \boldsymbol{X}) ;(4, G M)\left(\bar{\sigma}_{v} \varepsilon_{v} ; \bar{\sigma}_{v}^{\prime}, c_{v}\right) \quad v=1,2,3 \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(\bar{\sigma}_{1}, c_{1} ; \bar{\sigma}_{1}^{\prime}, c_{1}^{\prime}\right)=((\overline{1}), 1 ;(\overline{1}), 1) \\
& \left(\bar{\sigma}_{2}, c_{2} ; \bar{\sigma}_{2}^{\prime}, c_{2}^{\prime}\right)=((\overline{5}), 1 ;(\overline{5}), 2) \tag{18}\\
& \left(\bar{\sigma}_{3}, c_{3} ; \bar{\sigma}_{3}^{\prime}, c_{3}^{\prime}\right)=((\overline{9}), 1 ;(\overline{9}), 2)
\end{align*}
$$

are pairwise orthogonal and a 'special solution of the multiplicity problem' exists where the component multiplicity index w is identified with the special column indices in (18):

$$
\begin{equation*}
w=\left(\bar{\sigma}_{v}, c_{v} ; \bar{\sigma}_{v}^{\prime}, c_{v}^{\prime}\right) \quad v=1,2,3 . \tag{19}
\end{equation*}
$$

It is interesting to observe at this point that the 'special solution of the multiplicity problem', given by (18) and (19), is not unique. The row elements of the column vectors are given by (II.4) and are tabulated for those of non-zero norm in table 5.

Table 5. Row elements of column vectors in table 4. The indices ($\bar{\sigma}_{j}, c_{j} ; \bar{\sigma}_{j}^{\prime}, c_{j}^{\prime}$) labelling the column vectors of non-zero norm are abbreviated to a, b, c, d, e, f (see table 4). For all column vectors, the row elements other than those labelled by a, b, c, d, e, f are zero.

	a	b	c	d	e	f
a	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0
b	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
c	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
d	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
e	0	0	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
f	0	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$

From table 5 it is clearly seen that there are, in fact, $2^{3}=8$ triples of pairwise orthogonal column vectors, namely ($(a$ or $b)$), (c or d), (e or $f)$). Thus, there are 8 different 'special solutions of the multiplicity problem' for this case.

From (5), all remaining component multiplicities are unity and therefore, for each of these, it is only necessary to select one column vector of non-zero norm. The 'special solutions of the multiplicity problem' in terms of the indices of the chosen column vectors and their norms, for all component multiplicities in (5), are given in table 6.

Table 6. Special solutions of the multiplicity problem $w=\left(\bar{\sigma}_{v}, c_{2} ; \bar{\sigma}_{v}^{\prime}, c_{v}^{\prime}\right)$.

κ_{6}	$\left(\bar{\sigma}, \bar{\sigma}^{\prime}\right) q_{0}$	$\boldsymbol{w}=\left(\bar{\sigma}_{L}, c_{c} ; \bar{\sigma}_{v}^{\prime}, c_{v}^{\prime}\right)$	v	Norm
1	$((\overline{1}),(\overline{1})) \boldsymbol{G M}$	(($\overline{1}$), 1; ($\overline{1}), 1)$	1	$1 / \sqrt{6}$
2	((i), ($\overline{\mathrm{I}})$) $\boldsymbol{G M}$	(($\overline{1}), 1 ;(\overline{1}), 1)$	1	$1 / \sqrt{ } 6$
3	((I), ($\overline{1})) \boldsymbol{G M}$	((1) , 1; ($\overline{1}), 1)$	1	$1 / \sqrt{6}$
4	$((\overline{1}),(\overline{1})) \boldsymbol{G M}$	(($\overline{1}), 1 ;(\overline{1}), 1)$	1	$1 / \sqrt{ } 2$
4	((I), ($\overline{\mathrm{I}})$) GM	$((\overline{5}), 1 ;(\overline{5}), 2)$	2	$1 / \sqrt{ } 2$
4	$((\overline{1}),(\overline{1})) \boldsymbol{G M}$	$((\overline{9}), 1 ;(\overline{9}), 2)$	3	1/V2
1	$((\overline{1}),(\overline{5})) \mathbf{M}$	$((\overline{1}), 1 ;(\overline{5}), 1)$	1	$\frac{1}{2}$
2	$((\overline{1}),(\overline{5}), \boldsymbol{M}$	((1) $), 1 ;(\overline{5}), 1)$	1	$\frac{1}{2}$
3	((1) ${ }^{\text {(}}$, ($\left.\overline{5}\right)$) M	$((\overline{1}), 1 ;(\overline{5}), 1)$	1	$\frac{1}{2}$
4	$((\overline{1}),(\overline{5})) \boldsymbol{M}$	((1) $), 1 ;(\overline{5}), 1)$	1	$\frac{1}{2}$
1	(($\overline{5}),(\overline{1})) \mathbf{M}$	$((\overline{5}), 1 ;(\overline{1}), 1)$	1	$\frac{1}{2}$
2	(($\overline{5}),(\overline{1})) M$	(($\overline{5}), 1 ;(\overline{1}), 1)$	1	$\frac{1}{2}$
3	$((\overline{5}),(\overline{1})) \mathbf{M}$	($\overline{5}), 1 ;(\overline{1}), 1)$	1	$\frac{1}{2}$
4	$((\overline{5}),(\overline{1})) \mathbf{M}$	$((\overline{5}), 1 ;(\overline{1}), 1)$	1	$\frac{1}{2}$

Using the special solutions of the multiplicity problem in table 6 , all the columns of the cG matrix may be calculated asing (1) and the allowed matrix unirreps in tables 1,2 and 3 .

The cG matrix $C^{(1, \boldsymbol{X})(1, \boldsymbol{X})}$ in table 7 will reduce the Kronecker product $\left.\Lambda^{(1, \boldsymbol{X}}\right)[g] \otimes$ $\Lambda^{(1, X)}[g]$, for all $g \in G=P_{2} 3$, into block diagonal form. As an example, consider $g=(4,1)$. The allowed matrices $\Gamma^{\left(\kappa_{0}, G M\right)}[(4,1)], \Gamma^{\left(\kappa_{0}, \boldsymbol{X}\right)}[(4,1)], \Gamma^{\left(\kappa_{0}, M\right)}[(4,1)], \kappa_{0}=1$, $2,3,4$, are given in tables 1,2 and 3 respectively. Using (1.5) and tables (3.2a) and (3.6) of CDML, the matrices $\Lambda^{\left(\kappa_{0}, \boldsymbol{G M}\right)}[(4,1)], \Lambda^{\left(\kappa_{0}, \boldsymbol{X}\right)}[(4,1)], \Lambda^{\left(\kappa_{0}, M\right)}[(4,1)], \kappa_{0}=1,2,3$, 4 , may be constructed and are given in table 8 .

The Kronecker product matrix $\Lambda^{(1, \boldsymbol{X})}[(4,1)] \otimes \Lambda^{(1, \boldsymbol{X})}[(4,1)]$ is a 36×36 matrix given by the block matrix

$$
\Lambda^{(1, \boldsymbol{X})}[(4,1)] \otimes \Lambda^{(1, \boldsymbol{X})}[(4,1)]=\left(\begin{array}{cccccc}
\boldsymbol{X} & 0 & 0 & 0 & 0 & 0 \tag{20}\\
0 & -X & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & X & 0 & 0 \\
0 & 0 & X & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -X \\
0 & 0 & 0 & 0 & X & 0
\end{array}\right)
$$

where the matrix X is given by

$$
X=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \tag{21}\\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The rows and columns of $\Lambda^{(1, \boldsymbol{X}}[(4,1)] \otimes \Lambda^{(1, \boldsymbol{X})}[(4,1)]$ are indexed lexicographically by $\bar{\tau}, d ; \tilde{\tau}^{\prime}, d^{\prime}$ where $\bar{\tau} \in\{(\overline{1}),(\overline{5}),(\overline{9})\}, d=1,2, \bar{\tau}^{\prime} \in\{(\overline{1}),(\overline{5}),(\overline{9})\}, d^{\prime}=1,2$. It may be verified that the CG matrix $C^{(1, \boldsymbol{X})(1, X)}$ in table 7 , when substituted into (I.10) (with $(\kappa, \boldsymbol{q})=\left(\kappa^{\prime}, \boldsymbol{q}^{\prime}\right)=(1, \boldsymbol{X})$, and the component multiplicities $m_{\left.(\kappa, \boldsymbol{q})\left(\kappa^{\prime} ; \boldsymbol{q}^{\prime}\right) ;\left(\kappa_{\left.0, q_{0}\right)}^{(\boldsymbol{\sigma}}\right) \text { are given by } \boldsymbol{\sigma}^{\prime}\right)}$ (5), reduces the Kronecker product $\Lambda^{(1, \boldsymbol{X})}[(4,1)] \otimes \Lambda^{(1, \boldsymbol{X})}[(4,1)]$ into block diagonal
Table 7. CG matrix $C^{(1, X)(1, X)}$ for the reduction of $\Lambda^{(1, X)} \otimes \Lambda^{(1, x)} \cdot \omega=\exp (2 i \pi / 3), I=\exp (i \pi / 2), a=\sqrt{2}, b=2, c=\sqrt{6}$. The indexing of the rows and columns is explained by ((1.11) et seq. The number at the base of each
column divides each element of that column. The asterisk ${ }^{*}$ denotes the complex conjugate.

Table 8. Induced matrices $\Lambda^{(\kappa, q)}[(4,1)]$. The rows and columns of $\Lambda^{(\kappa, q)}[(4,1)]$ for $q=\boldsymbol{X}$, \boldsymbol{M} are labelled by the fixed left coset representatives ($\overline{1}),(\overline{5}),(\overline{9})$ of $\mathrm{P}^{\boldsymbol{X}}, \mathrm{P}^{M}$ in P .

$$
I=\exp (\mathrm{i} \pi / 2), A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), C=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$\boldsymbol{\kappa}$	\boldsymbol{q}	$\Lambda^{(\kappa, 9)}[(4,1)]$
1	$\boldsymbol{G M}$	1
$\mathbf{2}$	$\boldsymbol{G M}$	1
$\mathbf{3}$	$\boldsymbol{G M}$	1
$\mathbf{4}$	$\boldsymbol{G M}$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$
$\mathbf{1}$	\boldsymbol{X}	$\left(\begin{array}{ccc}\boldsymbol{A} & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C\end{array}\right)$
$\mathbf{2}$	\boldsymbol{M}	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & -I\end{array}\right)$
$\mathbf{3}$	\boldsymbol{M}	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -I & 0 \\ 0 & 0 & I\end{array}\right)$
$\mathbf{4}$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I\end{array}\right)$	

form given by:

$$
\begin{equation*}
\operatorname{diag}\{1,1,1, J, J, J, K, L, M, N, K, L, M, N\} \tag{22}
\end{equation*}
$$

where

$$
\begin{array}{ll}
J=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) & K=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & I & 0 \\
0 & 0 & -I
\end{array}\right) \\
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -I & 0 \\
0 & 0 & I
\end{array}\right) & M=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right)
\end{array}
$$

From (5) and table 8, it is verified that (22) gives the correct block diagonal form.

5. Conclusion

The purpose of this paper is to report that a computer program has been written, based on the method of Dirl (1979), to calculate CG coefficients for the reduction of Kronecker
products of Miller and Love (1967) matrix unirreps (as extended by Cracknell et al 1979) in any of the 230 (single or double) crystallographic space groups. The program uses wVSR and multiplicities previously computed (Davies and Cracknell 1979, Cracknell and Davies 1979) and the 'special solutions of the multiplicity problem' reported in DI and DII. The method is ideally suited for computer application, since a crucial feature, with respect to obtaining an efficient computer program, is that all elements of the cG matrix can be computed using a single, explicit formula (equation (1)) in terms of the allowed matrix unirreps of the little groups occurring in the Kronecker product. No solving of simultaneous equations is required as in, for example, Chen et al (1983).

The method is attractive for its elegance and essential simplicity. Once the rather complicated (but necessary) notation was mastered, it was straightforward to program. It is our intention to make available, in an appropriate form through Plenum Press, the co matrices for the Kronecker products tabulated in Davies and Cracknell (1979, 1980) and Cracknell and Davies (1979).

Acknowledgments

It is a pleasure to thank Dr Rainer Dirl, of the Institute of Theoretical Physics, The Technical University, Vienna, for reading the manuscript and for many valuable discussions on co coefficients and other aspects of group theory. In particular, the author is grateful for the careful and meticulous way he described his method of calculating CG coefficients during the author's visit to the Institute in the autumn of 1980. He also wishes to thank the Director of the Institute, Professor Dr H O Hittmair, and all its members for their hospitality. He wishes to acknowledge the financial support of the Science and Engineering Research Council and of The Royal Society, under its European Science Exchange Scheme, which made the visit possible. It is also a pleasure to thank Professor R J Elliott, Professor S C Miller, Professor W F Love, Professor Joseph L Birman, Professor Rhoda Berenson, Professor Arthur Cracknell and Dr Ken Derham of Plenum Press for their interest and encouragement in this work. Lastly, but by no means least, he wishes to thank the Director and Staff of the University College of North Wales Computing Laboratory for the generous allowance of computer time.

References

Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford: Clarendon)
Chen J.Q, Gao M-J and Ma G-Q 1983 Commun. Theor. Phys. 2 1613-8
Cracknell A P and Davies B L 1979 Kronecker Product Tables vol 3 Wave Vector Selection Rules and Reductions of Kronecker Products for Irreducible Representations of Triclinic, Monoclinic, Tetragonal, Trigonal and Hexagonal Space Groups (New York: Plenum)
Cracknell, A P, Davies B L, Miller S C and Love W F 1979 Kronecker Product Tables vol 1 General Introduction and Tables of Irreducible Representations of Space Groups (New York: Plenum)
Davies B L 1986a J. Phys. A: Math. Gen. 19 831-40

- 1986h J. Phys. A: Math. Gen. $19841-6$

Davies B L and Cracknell A P 1979 Kronecker Product Tables vol 2 Wave Vector Selection Rules and Reductions of Kronecker Products for Irreducible Representations of Orthorhombic and Cubic Space Groups (New York: Plenum)

- 1980 Kronecker Product Tables vol 4 Symmetrized Powers of Irreducible Representations of Space Groups (New York: Plenum)
Davies B L and Dirl R 1984 Proc. 12th Int. Colloq. on Group Theoretical Methods in Physics, Trieste, Italy, September 1983. Lecture Notes in Physics 201 373-5
Dirl R 1979 J. Math. Phys. 20 671-8
- 1981 Selection Rules for Double Space Groups. Preprint Institut für Theoretische Physik, Wien

Miller S C and Love W F 1967 Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups (Boulder, CO: Pruett)

